Modelling optimal risk allocation in PPP projects using artificial neural networks

نویسندگان

  • Xiao-Hua Jin
  • Guomin Zhang
چکیده

This paper aims to establish, train, validate, and test artificial neural network (ANN) models for modelling risk allocation decision-making process in public–private partnership (PPP) projects, mainly drawing upon transaction cost economics. An industry-wide questionnaire survey was conducted to examine the risk allocation practice in PPP projects and collect the data for training the ANN models. The training and evaluation results, when compared with those of using traditional MLR modelling technique, show that the ANN models are satisfactory for modelling risk allocation decision-making process. The empirical evidence further verifies that it is appropriate to utilize transaction cost economics to interpret risk allocation decision-making process. It is recommended that, in addition to partners' risk management mechanism maturity level, decision-makers, both from public and private sectors, should also seriously consider influential factors including partner's risk management routines, partners' cooperation history, partners' risk management commitment, and risk management environmental uncertainty. All these factors influence the formation of optimal risk allocation strategies, either by their individual or interacting effects. © 2010 Elsevier Ltd. and IPMA. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Allocation in Public-Private Partnership Projects – An Innovative Model with an Intelligent Approach

Both the increasing private participation in public projects and the critical importance of appropriate risk allocation to the success of Public-private partnership (PPP) projects justify specific research on how to establish effective risk allocation strategies in PPP projects. Partner’s risk management capability is currently the main concern to risk allocation in PPP projects. Following the ...

متن کامل

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

The Economic Evaluation of Optimal Water Allocation Using Artificial Neural Network (Case Study: Moghan Plain)

recipitation shortage and the consequent loss of several water resources, as well as the population growth, are the most important problems in arid and semi-arid regions like Iran. The providence of basic tools for optimal water resources management is considered as one of the main solutions to this problem. Since the agricultural sector is the main user of water resources, the present study pr...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016